

# **GCE**

# **Chemistry A**

Unit F322: Chains, Energy and Resources

Advanced Subsidiary GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2016

F322 Mark Scheme June 2016

## Annotations

| Annotation | Meaning                                                                                              |
|------------|------------------------------------------------------------------------------------------------------|
| BP         | Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or |
|            | unstructured) and on each page of an additional object where there is no candidate response.         |
| BOD        | Benefit of doubt given                                                                               |
| CON        | Contradiction                                                                                        |
| ×          | Incorrect response                                                                                   |
| ECF        | Error carried forward                                                                                |
| I          | Ignore                                                                                               |
| NAQ        | Not answered question                                                                                |
| NBOD       | Benefit of doubt not given                                                                           |
| POT        | Power of 10 error                                                                                    |
| ^          | Omission mark                                                                                        |
| RE         | Rounding error                                                                                       |
| SF         | Error in number of significant figures                                                               |
| <b>✓</b>   | Correct response                                                                                     |

F322 Mark Scheme June 2016

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

| Annotation   | Meaning                                                    |
|--------------|------------------------------------------------------------|
| DO NOT ALLOW | Answers which are not worthy of credit                     |
| IGNORE       | Statements which are irrelevant                            |
| ALLOW        | Answers that can be accepted                               |
| ()           | Words which are not essential to gain credit               |
| _            | Underlined words must be present in answer to score a mark |
| ECF          | Error carried forward                                      |
| AW           | Alternative wording                                        |
| ORA          | Or reverse argument                                        |

The following questions should be marked using **ALL** appropriate annotations to show where marks have been awarded in the body of the text:

1(b)(iii), 2(c), 2(d), 2e(ii), 3(a)(i), 3(b)(ii), 3(c)(ii), 4(b), 4(c)(i), 4(c)(ii) 5(b), 5(e) 7(a), 7b(i), 7b(ii)

All questions where an ECF has been applied.

### Checking additional pages

**All** the Additional Pages in the examination script must be checked to see if any candidates include any answers.

When you open question **1(a)** you will see a view of page 24 one of the Additional Pages. If the page is blank then, using the marking mode, annotate the page with the BP annotation You may need to contact your Team Leader if you do not know how to do this.

#### Generic comments

#### **ORGANIC STRUCTURES**

For a 'structure' or 'structural formula',

**ALLOW** correct structural **OR** displayed **OR** skeletal formula **OR** mixture of the above (as long as unambiguous)

For an alkyl group shown within a structure,

ALLOW bond drawn to C or H,

e.g. **ALLOW** CH<sub>3</sub>-,CH<sub>2</sub>-, C<sub>3</sub>H<sub>7</sub>-, etc

**ALLOW** vertical 'bond' to any part of an alkyl group

For an OH group shown within a structure,

DO NOT ALLOW formula with horizontal —HO OR OH -

**ALLOW** vertical 'bond' to any part of the OH group

For a CHO group shown within a structure,

DO NOT ALLOW COH

### For a 3D structure,

| i of a ob structure,                                                                                               |                                              |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| For bond in the plane of paper, a solid line is expected:                                                          |                                              |
| For bond out of plane of paper, a solid wedge is expected:                                                         |                                              |
| For bond into plane of paper, ALLOW:                                                                               | mining " " " " " " " " " " " " " " " " " " " |
| ALLOW a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge e.g.: |                                              |

#### **NAMES**

Names including alkyl groups: **ALLOW** alkanyl, e.g. ethanyl (i.e. **IGNORE** 'an') **DO NOT ALLOW** alkol, e.g. ethol (ie 'an' is essential)

Names of esters:

Two words are expected, e.g. ethyl ethanoate **ALLOW** one word, e.g. ethylethanoate

Names with multiple numbers and hyphens:

Use of 'e'

**ALLOW** superfluous 'e', e.g. propane-1-ol ('e' is kept if followed by consonant) **ALLOW** absence of 'e', e.g. propan-1,2-diol ('e' is omitted if followed by vowel)

Hyphens separate name from numbers:

ALLOW absence of hyphens, e.g. propane 1,2 diol

Multiple locant numbers must be clearly separated:

ALLOW full stops: e.g. 1.2 OR spaces: 1 2

DO NOT ALLOW e.g. 12

Locant numbers in formula must be correct

DO NOT ALLOW propan-3-ol

Order of substituents should be alphabetical:

ALLOW any order (as long as unambiguous), e.g. 2-chloro-3-bromobutane

### **ABBREVIATIONS**

van der Waal's forces

**ALLOW** vdw forces **OR** VDW forces (and any combination of upper and lower cases)

| C | Quest | ion  | Answer                                   | Marks | Guidance                                                                                                                                                |
|---|-------|------|------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | (a)   |      | C <sub>7</sub> H <sub>12</sub> ✓         | 1     |                                                                                                                                                         |
| 1 | (b)   | (i)  |                                          | 4     | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above                                                                       |
|   |       |      | Product from Br <sub>2</sub>             |       | IGNORE names                                                                                                                                            |
|   |       |      |                                          |       | WATCH for missed methyl stick                                                                                                                           |
|   |       |      | Br                                       |       | ALLOW added H shown, i.e.                                                                                                                               |
|   |       |      | Br ✓                                     |       | н он                                                                                                                                                    |
|   |       |      | Product from H <sub>2</sub> /Ni          |       | н Он Н                                                                                                                                                  |
|   |       |      |                                          |       |                                                                                                                                                         |
|   |       |      | Mixture of isomers from H <sub>2</sub> O |       |                                                                                                                                                         |
|   |       |      | OH V OH V                                |       | ALLOW in either order                                                                                                                                   |
| 1 | (b)   | (ii) | Steam <b>OR</b> temperature ≥ 100 °C ✓   | 2     | ALLOW H <sub>2</sub> O(g) IGNORE pressure                                                                                                               |
|   |       |      | acid (catalyst) ✓                        |       | IGNORE High temperature / reflux                                                                                                                        |
|   |       |      |                                          |       | ALLOW H <sup>+</sup> / named mineral acid / H <sub>2</sub> SO <sub>4</sub> / H <sub>3</sub> PO <sub>4</sub> DO NOT ALLOW 'weak acid' e.g. ethanoic acid |

June 2016

F322 Mark scheme

| C | uest | ion   | Answer                                                                                   | Marks | Guidance                                                                                                                                                                     |
|---|------|-------|------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | (b)  | (iii) |                                                                                          | 3     | ANNOTATE ANSWER WITH TICKS AND CROSSES                                                                                                                                       |
|   |      |       | Curly arrow from double bond to Br of Br–Br ✓  Correct dipole shown on Br–Br             |       | Curly arrow <b>must</b> start from bond and go to correct atom                                                                                                               |
|   |      |       | AND curly arrow showing breaking of Br–Br bond ✓                                         |       | DO NOT ALLOW any other partial charges e.g. shown on C=C bond                                                                                                                |
|   |      |       | Correct carbocation with + charge on C  AND  curly arrow from Br⁻ to C⁺ of carbocation ✓ |       | DO NOT ALLOW δ+ on C of carbocation.  IF C atoms are displayed IGNORE missing bonds to H atoms                                                                               |
|   |      |       | OR Br                                                |       | Curly arrow must come from a lone pair on Br <sup>-</sup> OR from the negative sign of Br <sup>-</sup> ion (then lone pair on Br <sup>-</sup> ion does not need to be shown) |
|   |      |       | <b>Note:</b> '+' and '-' are fine for charge (circles used for clarity)                  |       |                                                                                                                                                                              |
| 1 | (b)  | (iv)  | electrophilic addition ✓                                                                 | 1     |                                                                                                                                                                              |
|   | •    | •     | Total                                                                                    | 11    |                                                                                                                                                                              |

| C | Question |  | Answer                                                                                                           | Marks | Guidance                                                                                                                                                                  |
|---|----------|--|------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (a)      |  | (series of compounds with the) same functional group <b>OR</b> same/similar chemical properties/reactions ✓      | 2     | IGNORE reference to physical properties IGNORE same general formula                                                                                                       |
|   |          |  | each <b>successive/subsequent</b> member differs by CH₂ ✓                                                        |       | Differs by CH <sub>2</sub> is <b>not</b> sufficient ( <i>no successive</i> ) <b>DO NOT ALLOW</b> same empirical <b>OR</b> molecular formula                               |
| 2 | (b)      |  | $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 \checkmark$                                                          | 2     | ALLOW correct molecular OR structural OR displayed OR skeletal formula OR mixture of the above IGNORE state symbols                                                       |
|   |          |  | warm <b>OR</b> stated temperature between 20 °C and 45 °C <b>AND</b> anaerobic <b>OR</b> absence of air/oxygen ✓ |       | DO NOT ALLOW acidic or alkaline conditions ALLOW conditions shown in the equation A limited supply of oxygen is NOT sufficient IGNORE pressure IGNORE yeast (in question) |

| C | uest | ion | Answer                                                                       | Marks | Guidance                                                                                                                                                           |
|---|------|-----|------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (c)  |     |                                                                              | 2     | ANNOTATE ANSWER WITH TICKS AND CROSSES                                                                                                                             |
|   |      |     | Alcohols have hydrogen bonds (and van der Waals' forces) ✓                   |       | <b>ALLOW</b> reference to specific compounds e.g. comparing methane and methanol                                                                                   |
|   |      |     | Hydrogen bonds are stronger than van der Waals' forces (in alkanes) ✓        |       | Second marking point requires <b>BOTH</b> types of intermolecular forces in response i.e comparison of hydrogen bonds <b>AND</b> van der Waals is <b>essential</b> |
|   |      |     |                                                                              |       | <b>DO NOT ALLOW</b> the second mark for a comparison of van der Waals' and hydrogen bonds between alcohols and water                                               |
|   |      |     |                                                                              |       | <b>ALLOW</b> more energy required to break hydrogen bonds than van der Waals' forces                                                                               |
|   |      |     |                                                                              |       | <b>ALLOW</b> it is harder to overcome the hydrogen bonds than van der Waals' forces                                                                                |
|   |      |     |                                                                              |       | IGNORE more energy is needed to break bonds                                                                                                                        |
| 2 | (d)  |     |                                                                              | 2     | ANNOTATE ANSWER WITH TICKS AND CROSSES                                                                                                                             |
|   |      |     |                                                                              |       | Both answers need to be comparisons                                                                                                                                |
|   |      |     | 2-methylpropan-1-ol has less surface (area of) contact <b>OR</b>             |       | ALLOW ORA throughout                                                                                                                                               |
|   |      |     | fewer points of contact ✓                                                    |       | Reference to just surface area / closeness of molecules is <b>not</b> sufficient                                                                                   |
|   |      |     | 2-methylpropan-1-ol has fewer/weaker van der Waals' forces                   |       |                                                                                                                                                                    |
|   |      |     | OR                                                                           |       | IGNORE reference to H bonds                                                                                                                                        |
|   |      |     | less energy required to break van der Waals' forces in 2-methylpropan-1-ol ✓ |       | IGNORE less energy is needed to break bonds                                                                                                                        |
| 2 | (e)  | (i) | Elimination <b>OR</b> dehydration ✓                                          | 1     |                                                                                                                                                                    |

| ( | Quest | ion  | Answer                                                                                                                                            | Marks | Guidance                                                                                                                                                                         |
|---|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (e)   | (ii) | IF answer = 14.0 OR 14.1 g award 3 marks                                                                                                          | 3     | ANNOTATE ANSWER WITH TICKS AND CROSSES                                                                                                                                           |
|   |       |      |                                                                                                                                                   |       | ALLOW ECF at each stage                                                                                                                                                          |
|   |       |      | actual                                                                                                                                            |       | ALLOW 3 SF up to calculator value correctly rounded for intermediate values                                                                                                      |
|   |       |      | $n(C_5H_8)$ produced = $\frac{5.00}{68.0}$ = 0.0735 (mol) $\checkmark$                                                                            |       | <b>ALLOW</b> expected mass $C_5H_8 = 5.00 \times \frac{100}{45.0} = 11.111 (g)$                                                                                                  |
|   |       |      | theoretical $n(C_5H_9OH) = n(C_5H_8) = 0.0735 \times \frac{100}{45.0} = 0.163 \text{ (mol)} \checkmark$                                           |       | <b>ALLOW</b> Mass $C_5H_9OH$ reacted = 0.0735 × 86.0 = 6.321 (g)                                                                                                                 |
|   |       |      | Mass of $C_5H_9OH = 0.163 \times 86.0 = 14.0$ (g) <b>OR</b> 14 g <b>OR</b> 14.1 g $\checkmark$ (use of unrounded values in calculator throughout) |       | <b>ALLOW</b> Mass of $C_5H_9OH$ used = $6.321 \times \frac{100}{45.0} = 14.0$ <b>OR</b> 14 (g) <b>ALLOW 2 SF</b> up to calculator value correctly rounded for mass of $C_5H_9OH$ |
|   |       |      |                                                                                                                                                   |       | <b>Note:</b> 2.84 <b>OR</b> 2.85 g would get 2 marks (use of 45.0/100 instead of 100/45.0) 13.76 <b>OR</b> 13.8 would get 2 marks (use of 0.16 for moles $C_5H_9OH$ )            |

F322 Mark scheme June 2016

| Question  | Answer              | Marks | Guidance                                                                                                                                                                                                                             |
|-----------|---------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 (f) (i) |                     | 1     | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above                                                                                                                                                    |
|           | CI + NaOH OH + NaCI |       | <b>ALLOW</b> equation with OH <sup>−</sup> as reactant and Cl <sup>−</sup> product e.g (CH <sub>3</sub> ) <sub>3</sub> CCH <sub>2</sub> Cl + OH <sup>−</sup> → (CH <sub>3</sub> ) <sub>3</sub> CCH <sub>2</sub> OH + Cl <sup>−</sup> |
|           |                     |       | <b>IGNORE</b> equations with KOH/H <sub>2</sub> O as reactant <i>(question states sodium hydroxide)</i>                                                                                                                              |
|           |                     |       | IGNORE molecular formulae (question requires structures)                                                                                                                                                                             |

Mark scheme June 2016

F322

| Question            | Answer                                                                                                                                   | Marks | Guidance                                                                                                                                                                                                                                                                                            |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 2 (f) (ii) | Curly arrow from HO⁻ to carbon atom of C−Cl bond ✓  Dipole shown on C−Cl bond, C⁵⁺ and Cl⁵⁻  AND curly arrow from C−Cl bond to Cl atom ✓ | 2     | Curly arrow must come from lone pair on O of HO⁻ OR OH⁻ OR from minus sign on O of HO⁻ ion (No need to show lone pair if curly arrow came from negative charge)  NOTE: ALLOW mechanism involving ANY halogenoalkane as structures have been assessed in 2(f)(i)  —————————————————————————————————— |
|                     | Total                                                                                                                                    | 15    |                                                                                                                                                                                                                                                                                                     |

F322 Mark scheme June 2016

| Q | Question |      | Answer                                                                                                                                          | Marks | Guidance                                                                                                                                                                                              |
|---|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (a)      | (i)  | IF $\Delta H_r = -347$ (kJ mol <sup>-1</sup> ) award 4 marks<br>IF $\Delta H_r = (+)347$ (kJ mol <sup>-1</sup> ) award 3 marks (incorrect sign) | 4     | ANNOTATE ANSWER WITH TICKS AND CROSSES                                                                                                                                                                |
|   |          |      | Moles Amount, n(CuSO₄), calculated correctly = 0.0125 (mol) ✓                                                                                   |       |                                                                                                                                                                                                       |
|   |          |      | Energy<br>q calculated correctly = 4336.75 (J) OR 4.33675 (kJ) ✓                                                                                |       | <b>Note:</b> $q = 25.0 \times 4.18 \times 41.5$                                                                                                                                                       |
|   |          |      |                                                                                                                                                 |       | ALLOW 3 SF up to calculator value of 4336.75 J IGNORE sign IGNORE working                                                                                                                             |
|   |          |      | Calculating $\Delta H$ correctly calculates $\Delta H$ in kJ mol <sup>-1</sup> to 3 or more sig figs $\checkmark$                               |       | <b>Note:</b> from 4336.75 J and 0.0125 mol $\Delta H$ = (-)346.940 kJ mol <sup>-1</sup> <b>IGNORE</b> sign at this intermediate stage <b>ALLOW ECF</b> from $n(\text{CuSO}_4)$ and/or energy released |
|   |          |      | Rounding and Sign calculated value of $\Delta H$ rounded to 3 sig. fig. with minus sign $\checkmark$                                            |       | Final answer must have <b>correct sign</b> and <b>three sig figs</b>                                                                                                                                  |
|   |          |      |                                                                                                                                                 |       | Answer is still –347 from rounding of <i>q</i> to 4340 J                                                                                                                                              |
| 3 | (a)      | (ii) | Minimum mass = 0.0125 × 24.3 × 1.25 = 0.38(0) g ✓                                                                                               | 1     | <b>ALLOW ECF</b> for mass correctly rounded to 2 dp from incorrect moles of CuSO <sub>4</sub> in <b>3(a)(i)</b>                                                                                       |

PMT

| Question |     | on  | Answar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks      | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | (b) |     | Answer  (enthalpy change that occurs) when one mole of a substance $\checkmark$ completely combusts <b>OR</b> reacts fully with oxygen $\checkmark$ 298 K / 25 °C <b>AND</b> 1 atm / 100 kPa / 101 kPa / 10 <sup>5</sup> Pa / 1 bar $\checkmark$ IF answer = -281 (kJ mol <sup>-1</sup> ), award 2 marks  IF answer = (+)281 (kJ mol <sup>-1</sup> ), award 1 mark  Working for C <b>AND</b> H <sub>2</sub> seen anywhere  9 × (-)394 <b>AND</b> 10 × (-)286  OR (-)3546 <b>AND</b> (-)2860  OR (-)6406 $\checkmark$ Calculates $\triangle H_c$ correctly $-64066125 = -281$ kJ mol <sup>-1</sup> $\checkmark$ | Marks<br>3 | ALLOW energy required OR energy released  ALLOW one mole of a compound OR one mole of an element  ALLOW combusts in excess oxygen  ALLOW burns in excess oxygen  Combusts in excess air is not sufficient  IGNORE reference to concentration  ANNOTATE ANSWER WITH TICKS AND CROSSES  IF there is an alternative answer, check to see if there is any ECF credit possible  Common incorrect answers are shown below  Award 1 mark for  5445 (not used × 9 and × 10)  2871 (not used × 9)  2293 (not used × 10) |
| 3        | (c) | (i) | (Average enthalpy change) when one mole of bonds ✓ of (gaseous covalent) bonds is broken ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2          | IGNORE energy required OR energy released  DO NOT ALLOW bonds formed  IGNORE heterolytic/homolytic                                                                                                                                                                                                                                                                                                                                                                                                             |

F322 Mark scheme June 2016

| Q | uestic | on   | Answer                                                                                                                   | Marks | Guidance                                                                                                                                                 |
|---|--------|------|--------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (c)    | (ii) | IF answer = (+)1062 (kJ mol <sup>-1</sup> ), award 3 marks IF answer = -1062 (kJ mol <sup>-1</sup> ), award 2 marks      | 3     | ANNOTATE ANSWER WITH TICKS AND CROSSES                                                                                                                   |
|   |        |      | ( $\Delta H$ for bonds broken =) 2580 (kJ mol <sup>-1</sup> )<br><b>OR</b> 1652 <b>AND</b> 928 (kJ mol <sup>-1</sup> ) ✓ |       | IGNORE sign                                                                                                                                              |
|   |        |      | $(\Delta H \text{ for bonds formed =}) 1308 \text{ (kJ mol}^{-1}) \checkmark$                                            |       | IGNORE sign                                                                                                                                              |
|   |        |      | (bond enthalpy CO = 2580 − 1308 − 210) = (+)1062 (kJ mol <sup>-1</sup> ) ✓                                               |       | ALLOW ECF  IGNORE rounding of 1062 to 1060 and credit 1062 from working  Award 2 marks for ±1272 (from ±(2580 – 1308)) ±1482 (from ±(2580 – 1308 + 210)) |
|   | 1      |      | Total                                                                                                                    | 15    |                                                                                                                                                          |

PMT

|   | Quest | ion  | Answer                                                                                                      | Marks | Guidance                                                                                                              |
|---|-------|------|-------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------|
| 4 | (a)   | (i)  | Equilibrium (position) shifts to right  AND  turns paler (brown) ✓                                          | 2     | ALLOW turns colourless  IGNORE initially goes darker (brown)  Note: ALLOW suitable alternatives for 'to right', e.g.: |
|   |       |      |                                                                                                             |       | towards products OR towards N <sub>2</sub> O <sub>4</sub> OR in forward direction OR favours the right                |
|   |       |      |                                                                                                             |       | IGNORE responses in terms of rate                                                                                     |
|   |       |      | Right-hand side has fewer (gaseous) moles/molecules  OR left-hand side has more (gaseous) moles/molecules ✓ |       |                                                                                                                       |
| 4 | (a)   | (ii) | Equilibrium (position) shifts to left  AND                                                                  | 2     | ALLOW turns brown                                                                                                     |
|   |       |      | turns darker/deeper (brown) ✓                                                                               |       | Note: ALLOW suitable alternatives for 'to left', e.g.: towards reactants OR towards NO <sub>2</sub>                   |
|   |       |      |                                                                                                             |       | OR in reverse direction OR favours the left                                                                           |
|   |       |      | (Forward) reaction is exothermic  OR (forward) reaction gives out heat                                      |       | <b>IGNORE</b> comments about the 'exothermic side' or 'endothermic side'                                              |
|   |       |      | OR reverse reaction is endothermic OR reverse reaction takes in heat ✓                                      |       | <b>ALLOW</b> 'equilibrium (position) shifts left <b>AND</b> in the endothermic direction' for second marking point    |
|   |       |      |                                                                                                             |       | IGNORE responses in terms of rate                                                                                     |
|   |       |      |                                                                                                             |       |                                                                                                                       |

|   | Questi | on | Answer                                                                                                                              | Marks   | Guidance                                                                                                                                                                                                                     |
|---|--------|----|-------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | Questi | on | Answer  Addition of acid  [H⁺] OR H⁺ increases  AND  equilibrium (position) shifts to right ✓                                       | Marks 2 | ANNOTATE ANSWER WITH TICKS AND CROSSES  IGNORE amount of acid increases (in question) ALLOW (added) acid reacts with CrO <sub>4</sub> <sup>2-</sup> Note: ALLOW suitable alternatives for 'to right', e.g.: towards products |
|   |        |    | Addition of alkali  Alkali reacts with H <sup>+</sup> OR alkali removes H <sup>+</sup> AND  equilibrium (position) shifts to left ✓ |         | OR towards $Cr_2O_7^{2-}$ / $H_2O$<br>OR in forward direction<br>OR favours the right  ALLOW $H^+ + OH^- \rightarrow H_2O$<br>ALLOW alkali reacts with (added) acid                                                          |
|   |        |    |                                                                                                                                     |         | Note: ALLOW suitable alternatives for 'to left', e.g.: towards reactants OR towards $CrO_4^{2-}$ / $H^+$ OR in reverse direction OR favours the left                                                                         |
|   |        |    |                                                                                                                                     |         | IGNORE just H <sup>+</sup> concentration decreases (needs role of alkali) IGNORE concentration of water increases (needs role of alkali)                                                                                     |

F322 Mark scheme June 2016

|   | Question |     | Answer                                                                                                                                   | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                               |
|---|----------|-----|------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | (c)      | (i) | $E_a: without catalyst$ $E_c: with catalyst$ $ZnSO_4(aq) + H_2(g)$ $E_a: without catalyst$ $ZnSO_4(aq) + H_2(g)$ $E_a: without catalyst$ | 3     | ANNOTATE ANSWER WITH TICKS AND CROSSES                                                                                                                                                                                                                                                                                                                                                 |
|   |          |     | Zn and $H_2SO_4$ on LHS <b>AND</b> ZnSO <sub>4</sub> + $H_2$ on RHS $\checkmark$                                                         |       | IGNORE state symbols.                                                                                                                                                                                                                                                                                                                                                                  |
|   |          |     | Δ <i>H</i> labelled with product below reactant <b>AND</b> arrow downwards ✓                                                             |       | $\Delta H$ :  DO NOT ALLOW $-\Delta H$ ALLOW this arrow even if it has a small gap at the top and bottom i.e. does not quite reach reactant or product line                                                                                                                                                                                                                            |
|   |          |     | $E_{ m a}$ <b>AND</b> $E_{ m c}$ correctly labelled with $E_{ m c}$ below $E_{ m a}$ $\checkmark$                                        |       | $\emph{\textbf{E}}_a$ : <b>ALLOW</b> no arrowhead or arrowheads at both ends of activation energy line  The $\emph{\textbf{E}}_a$ line must point to maximum (or near to the maximum) on the curve $\emph{\textbf{OR}}$ span approximately 80% of the distance between reactants and maximum regardless of position <b>ALLOW</b> AE or $\emph{\textbf{A}}_E$ for $\emph{\textbf{E}}_a$ |

F322 Mark scheme June 2016

| C | Question |      | Answer                                                                                                                                                                                                     | Marks | Guidance                                                                                                                                                                                                                              |
|---|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | (c)      | (ii) |                                                                                                                                                                                                            | 4     | ANNOTATE ANSWER WITH TICKS AND CROSSES                                                                                                                                                                                                |
|   |          |      | Number of Malecules                                                                                                                                                                                        |       | Curve must start at origin. The limit of acceptability is that the curve must start within the first small square nearest the origin.                                                                                                 |
|   |          |      |                                                                                                                                                                                                            |       | Curve must not touch the x-axis at higher energy                                                                                                                                                                                      |
|   |          |      | _/                                                                                                                                                                                                         |       | IGNORE a slight inflexion on the curve                                                                                                                                                                                                |
|   |          |      | Correct drawing of a Boltzmann distribution curve ✓                                                                                                                                                        |       | DO NOT ALLOW two curves DO NOT ALLOW a curve that bends up at the end by more than one small square                                                                                                                                   |
|   |          |      | Axes labelled y axis: (number of) molecules <b>AND</b> x axis: (kinetic) energy ✓                                                                                                                          |       | ALLOW particles instead of molecules on y axis DO NOT ALLOW enthalpy for x-axis label DO NOT ALLOW atoms instead of particles or molecules ALLOW ECF for the subsequent use of atoms (instead of molecules or particles)              |
|   |          |      | Catalyst lowers the activation energy (by providing an alternative route) ✓                                                                                                                                |       | ALLOW annotations on Boltzmann distribution diagram                                                                                                                                                                                   |
|   |          |      | QWC – (With a catalyst a) greater proportion of molecules with energy greater than activation energy OR  (With a catalyst a) greater proportion of molecules with energy equal to the activation energy OR |       | <b>QWC</b> requires more molecules have/exceed activation energy/ $E_a$ . <b>IGNORE</b> more molecules have enough energy to react for the <b>QWC</b> mark (as not linked to $E_a$ ) <b>ORA</b> if states the effect with no catalyst |
|   |          |      | (With a catalyst there is a) greater area under curve above the activation energy ✓                                                                                                                        |       | IGNORE (more) successful collisions                                                                                                                                                                                                   |

| ( | Questi | ion  | Answer                                                                                                                                               | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|---|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 4 | (d)    | (i)  | (i) Catalyst (name or correct formula)  AND  balanced equation for the reaction catalysed ✓                                                          |       | Many possible responses but in practice it is likely that examples will be few, e.g. Fe <b>AND</b> $N_2 + 3H_2 \rightarrow 2NH_3$ $V_2O_5/Pt$ <b>AND</b> $2SO_2 + O_2 \rightarrow 2SO_3$ $H_2SO_4/H_3PO_4$ <b>AND</b> $C_2H_4 + H_2O \rightarrow C_2H_5OH$ Hydrogenation of an alkene: e.g. Ni <b>AND</b> $C_2H_4 + H_2 \rightarrow C_2H_6$ Esterification: e.g. $H_2SO_4$ <b>AND</b> $CH_3COOH + C_2H_5OH \rightarrow CH_3COOC_2H H_2O$ <b>ALLOW</b> multiples for equation |  |
| 4 | (d)    | (ii) | Any two from:                                                                                                                                        | 2     | IGNORE catalyst not used up in reaction IGNORE catalyst can be re-used                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|   |        |      | lower temperatures/lower pressures (can be used) ✓                                                                                                   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|   |        |      | lower energy demand OR uses less fuel OR reduces CO₂ emissions ✓                                                                                     |       | IGNORE lower activation energy IGNORE cheaper IGNORE less greenhouse gases OR reduces global warming                                                                                                                                                                                                                                                                                                                                                                         |  |
|   |        |      | (different reactions can be used with) greater atom economy OR less waste OR can reduce use of toxic solvents OR can reduce use of toxic reactants ✓ |       | ALLOW increases atom economy  ALLOW reduce use of hazardous/toxic/harmful/poisonous chemicals                                                                                                                                                                                                                                                                                                                                                                                |  |
|   |        |      | (catalysts are often enzymes) generating specific products ✓                                                                                         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

| C | Question |      | Answer                                        |    | Guidance                                        |
|---|----------|------|-----------------------------------------------|----|-------------------------------------------------|
| 4 | (e)      | (i)  | Thunderstorms/lightning <b>AND</b> aircraft ✓ | 1  | IGNORE car engines                              |
|   |          |      |                                               |    |                                                 |
| 4 | (e)      | (ii) | $NO + O_3 \rightarrow NO_2 + O_2 \checkmark$  | 2  |                                                 |
|   |          |      | $NO_2 + O \rightarrow NO + O_2 \checkmark$    |    | <b>ALLOW</b> $NO_2 + O_3 \rightarrow NO + 2O_2$ |
|   |          |      |                                               |    | IGNORE dots                                     |
|   |          |      |                                               |    | IGNORE $O + O_3 \rightarrow 2O_2$               |
|   |          |      | Tatal                                         | 40 | <b>IGNORE</b> $2O_3 \rightarrow 3O_2$           |
|   |          |      | Total                                         | 19 |                                                 |

| Q | uestior | Answer                                                                                                                        | Marks | Guidance                                                                                                                                                                                              |
|---|---------|-------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (a)     | C <sub>n</sub> H <sub>2n+2</sub> ✓                                                                                            | 1     |                                                                                                                                                                                                       |
| 5 | (b)     | Formation of NO and CO 2 marks                                                                                                | 6     | ANNOTATE ANSWER WITH TICKS AND CROSSES                                                                                                                                                                |
|   |         | $N_2 + O_2 \rightarrow 2NO$ <b>AND</b> $C_8H_{18} + 8\frac{1}{2}O_2 \rightarrow 8CO + 9H_2O \checkmark$                       |       | IGNORE state symbols<br>ALLOW multiples, e.g. $\frac{1}{2}N_2 + \frac{1}{2}O_2 \rightarrow NO$<br>$2C_8H_{18} + 17O_2 \rightarrow 16CO + 18H_2O$                                                      |
|   |         |                                                                                                                               |       | <b>ALLOW</b> equations for incomplete combustion that give CO with CO <sub>2</sub> and/or C e.g. $C_8H_{18} + 10\frac{1}{2}O_2 \rightarrow 4CO + 4CO_2 + 9H_2O$                                       |
|   |         |                                                                                                                               |       | <b>ALLOW</b> $C_8H_{18} + N_2 + 9\frac{1}{2}O_2 \rightarrow 8CO + 9H_2O + 2NO$                                                                                                                        |
|   |         | (N₂ and O₂ react in) hot conditions (to form NO)  OR  incomplete combustion (of C <sub>8</sub> H <sub>18</sub> produces CO) ✓ |       | IGNORE NO/CO form in engine (in question)                                                                                                                                                             |
|   |         | Reducing NO and CO by catalytic converter 4 marks                                                                             |       |                                                                                                                                                                                                       |
|   |         | CO and NO/reactants are adsorbed (onto surface) ✓                                                                             |       | ALLOW CO and NO /reactants bond to surface (of catalyst) DO NOT ALLOW absorbed                                                                                                                        |
|   |         | Bonds in reactants weaken OR activation energy decreases ✓                                                                    |       | ALLOW bonds weaken in CO OR bonds weaken in NO                                                                                                                                                        |
|   |         | Reaction: 2CO + 2NO $\longrightarrow$ 2CO <sub>2</sub> + N <sub>2</sub> $\checkmark$                                          |       | <b>IGNORE</b> state symbols <b>ALLOW</b> multiples, e.g. $CO + NO \rightarrow CO_2 + \frac{1}{2}N_2$                                                                                                  |
|   |         | CO₂ and N₂ desorb (from surface)  OR products desorb (from surface)✓                                                          |       | <b>ALLOW</b> products leave the surface/catalyst <b>OR</b> CO <sub>2</sub> and N <sub>2</sub> no longer bonded to surface/catalyst <b>ALLOW</b> deadsorption <b>ALLOW</b> diffuse away for desorption |

F322 Mark scheme June 2016

| Q | uestio | n Answer                                                                                                                                   | Marks | Guidance                                                                          |
|---|--------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------|
| 5 | (c)    | structure of a branched saturated hydrocarbon with 8 C atoms ✓ structure of a cyclic saturated hydrocarbon with 8 C atoms ✓                | 3     | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above |
|   |        | Correct name for <b>BOTH</b> structures given ✓                                                                                            |       | DO NOT ALLOW names for hydrocarbons that do not have 8 C atoms                    |
| 5 | (d)    | abundance (in atmosphere) <b>OR</b> amount (in atmosphere) <b>OR</b> (atmospheric) concentration <b>OR</b> percentage (in air) ✓ <b>OR</b> | 2     |                                                                                   |
|   |        | ability to absorb <b>infrared/IR</b> (radiation)✓                                                                                          |       | ALLOW absorption of infrared/IR                                                   |
|   |        | OR                                                                                                                                         |       |                                                                                   |
|   |        | residence time ✓                                                                                                                           |       |                                                                                   |

F322 Mark scheme June 2016

| C | uestion | Answer                                                                                                                                                                                                                                                                                                              | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (e)     | IF answer = 259 (litres), award 4 marks                                                                                                                                                                                                                                                                             | 4     | ANNOTATE ANSWER WITH TICKS AND CROSSES                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |         | $(n(\text{CO}_2) \text{ decrease} = 5.6 \times 10^5/44.0) = 12727.27273 \text{ (mol)} \checkmark$ $(n(\text{C}_8\text{H}_{16}) \text{ decrease} = 12727 \div 8) = 1590.909091 \text{ (mol)} \checkmark$ $(\text{mass of C}_8\text{H}_{18} \text{ decrease}) = 1591 \times 114 = 181363.6364 \text{ (g)} \checkmark$ |       | ALLOW 3 SF up to calculator value correctly rounded throughout.  NOTE: Be generous for values. Depending on any intermediate rounding, you may see a range of values for each stage. For guidance, the expected answers give unrounded values throughout.  ALLOW ECF throughout for approaches that use moles CO <sub>2</sub> /C <sub>8</sub> H <sub>18</sub> IGNORE rounding of 259 to 260 and credit 259 from working ALLOW the following alternate method |
|   |         | (C <sub>8</sub> H <sub>18</sub> decrease) = 181363.6364 ÷ 700 g = 259 (litres) ✓                                                                                                                                                                                                                                    |       | $(n  C_8 H_{18}  \text{in a litre} = 700 \div 114) = 6.140350877  (\text{mol}) \checkmark$ $(n(CO_2)  \text{produced per litre} = 6.14 \times 8) = 49.12280702  (\text{mol}) \checkmark$ $(\text{mass } CO_2  \text{produced per litre} = 49.12 \times 44) = 2161.403509  (\text{g}) \checkmark$ $(\text{annual reduction} = 5.6 \times 10^5/2161) = 259.0909091  (\text{litres}) \checkmark$                                                                |
|   | •       | Total                                                                                                                                                                                                                                                                                                               | 16    |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| ( | Quest | ion  | Answer                                                                                                                                                                                                 | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|---|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6 | (a)   | (i)  | Evidence that 84 (M <sup>+</sup> peak)<br>= $6 \times 14$ (mass of CH <sub>2</sub> ) $\checkmark$<br>e.g. $\frac{84}{14} = 6$                                                                          | 1     | <b>IGNORE</b> use of molecular formula<br>e.g (6 × 12) + (12 × 1) = 84 (use of empirical formula<br>required)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 6 | (a)   | (ii) | Structures of species  peak I CH₃CH=CH ✓  peak II CH₃CH=CHCH₂CH₂ OR CH=CHCH₂CH₂CH₃ ✓  + charge on BOTH CORRECT species 1 mark  CH₃CH=CH <sup>+</sup> AND CH₃CH=CHCH₂CH₂ <sup>+</sup> ✓  peak I peak II | 3     | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above  ALLOW 1 mark if both correct structures are shown but in the incorrect columns  ALLOW 1 mark for both correct structures if one or both have an 'end bond'  ALLOW 1 mark for BOTH molecular formulae correct  C <sub>3</sub> H <sub>5</sub> AND C <sub>5</sub> H <sub>9</sub> peak I peak II  ALLOW 'charge mark' for + charge on BOTH fragments with correct molecular formulae  ALLOW 'charge mark' for + charge on BOTH CORRECT molecular formulae  ALLOW + change anywhere in structures OR outside brackets |  |
|   |       |      |                                                                                                                                                                                                        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |

| C | Question |      | Answer                                                                                       |             | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|----------|------|----------------------------------------------------------------------------------------------|-------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | (b)      | (i)  | E-hex-2-ene                                                                                  | Z-hex-2-ene | 2     | ALLOW 1 mark if skeletal formulae of both <i>E</i> and <i>Z</i> hex-2-ene are shown but in the incorrect columns  IF correct unambiguous structural OR displayed OR mixture of formulae are shown ALLOW 1 mark if both stereoisomers are in the correct columns e.g the following scores 1 mark  CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> H  CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> H  E-hex-2-ene  Z-hex-2-ene  IF the skeletal formula of <i>E</i> hex-3-ene is shown in the first box ALLOW 1 mark for the skeletal formula of <i>Z</i> hex-3-ene |
| 6 | (b)      | (ii) | (carbon-carbon) double bond double on the carbon atom of the double different groups/atoms ✓ |             | 2     | as ECF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6 | (c)      | (i)  | One repeat unit shown ✓ (could be any of the three repeat units shown)                       |             | 1     | ALLOW repeat unit at any point along the section provided that it works, e.g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

F322 Mark scheme June 2016

| Question |     | ion   | Answer                            | Marks | Guidance                                                                                                   |
|----------|-----|-------|-----------------------------------|-------|------------------------------------------------------------------------------------------------------------|
| 6        | (c) | (ii)  | Structure of pent-2-ene:          | 1     | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) |
| 6        | (c) | (iii) | (50,000/70 =) 714 <b>OR</b> 715 ✓ | 1     | MUST be a whole number                                                                                     |
|          |     |       | Total                             | 11    |                                                                                                            |

| Question | Answer                                                                                                                                    | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 (a)    | Empirical/molecular formula 3 marks Mole ratio C : H : Br is 2.44 : 5.70 : 0.814 $\checkmark$ (Empirical formula) = $C_3H_7Br \checkmark$ | 5     | ANNOTATE ANSWER WITH TICKS AND CROSSES $ \textbf{ALLOW} \ \frac{29.29}{12.0} : \frac{5.70}{1.0} : \frac{65.01}{79.9} $                                                                                                                                                                                                                                                                                          |
|          | <b>QWC</b> (Molecular formula) = C <sub>3</sub> H <sub>7</sub> Br <b>AND</b> relative mass linked to 150 evidence ✓                       |       | Evidence could include a calculation of the relative mass of $C_3H_7Br$ as 122.9 linking to $M_r$ being less than 150                                                                                                                                                                                                                                                                                           |
|          | Structural isomers 2 marks  CH₃CH₂CH₂Br ✓ CH₃CHBrCH₃ ✓                                                                                    |       | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)  DO NOT ALLOW missing H atom(s) in a displayed formula for one structure but ALLOW missing H atoms in subsequent structure  Note: structures from an incorrect molecular formula will be credited on their merits. Please consult TL for advice on how to mark the subsequent parts of this question |

| Question |     | ion | Answer                                                                                                          | Marks          | Guidance                                                                                                                                                    |
|----------|-----|-----|-----------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7        | (b) | (i) | Infrared for G 2 ma                                                                                             | 6<br>arks      | ANNOTATE ANSWER WITH TICKS AND CROSSES  LOOK ON THE SPECTRUM for labelled peaks which can be                                                                |
|          |     |     | 1700 cm <sup>-1</sup> <b>AND</b> C=O/carbonyl group ✓ (broad) 2300–3600 cm <sup>-1</sup> <b>AND</b> O–H in carb | ooxylic acid ✓ | given credit <b>ALLOW</b> ranges from <i>Data Sheet</i> : C=O within range 1640–1750 cm <sup>-1</sup> ; (broad) O–H within range 2500–3300 cm <sup>-1</sup> |
|          |     |     | Structures 3 ma<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH ✓                                         | arks           | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)                                                  |
|          |     |     | CH <sub>3</sub> CHOHCH <sub>3</sub> ✓ CH <sub>3</sub> CH <sub>2</sub> COOH ✓                                    |                | ALLOW CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub> H for carboxylic acid  IGNORE names                                                                   |
|          |     |     |                                                                                                                 |                | IGNORE labels                                                                                                                                               |
|          |     |     |                                                                                                                 |                | <b>DO NOT ALLOW</b> missing H atom(s) in a displayed formula for one structure but <b>ALLOW</b> missing H atoms in subsequent structures                    |
|          |     |     | Equation for formation of G 1 ma                                                                                | ark            |                                                                                                                                                             |
|          |     |     | $C_3H_8O + 2[O] \rightarrow C_3H_6O_2 + H_2O \checkmark$                                                        |                | ALLOW correct structural <b>OR</b> displayed <b>OR</b> skeletal formula <b>OR</b> mixture of the above in equation                                          |

F322 Mark scheme June 2016

| Question |     | ion  | Answer                                                                                                                                                                                                                                                                                             | Marks | Guidance                                                                                                                                                                                                                                                                                                             |
|----------|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7        | (b) | (ii) | 2 marks for correct ester.  CH <sub>3</sub> CH <sub>2</sub> COOCH(CH <sub>3</sub> ) <sub>2</sub> ✓✓  Award 1 mark for:  CH <sub>3</sub> CH <sub>2</sub> COOCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> OR  Ambiguous ester: CH <sub>3</sub> CH <sub>2</sub> COOC <sub>3</sub> H <sub>7</sub> ✓ | 2     | ANNOTATE ANSWER WITH TICKS AND CROSSES  ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)  ALLOW C <sub>2</sub> H <sub>5</sub> CO <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> IF there is one bond and its H missing from the correct ester award 1 mark |
|          |     |      | Total                                                                                                                                                                                                                                                                                              | 13    |                                                                                                                                                                                                                                                                                                                      |

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

#### **OCR Customer Contact Centre**

### **Education and Learning**

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553



